Asymptotic constructions and invariants of graded linear series

Shin-Yao Jow

Department of Mathematics National Tsing Hua University

TMS Annual Meeting, January 18th 2022

▲◎ ▶ ▲ 臣 ▶ ▲ 臣

- $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- K = alg. closed field.
- X = projective variety over **K**.
- L = line bundle on X.

イロト イポト イヨト イヨト

æ

- A linear series (linear system) associated to L on X is a vector subspace V ⊆ H⁰(X, L). Ex: V = H⁰(X, L) is called the complete linear series.
- A (nonzero) linear series V ⊆ H⁰(X, L) defines a rational map φ: X --→ P(V). (In terms of a basis {s₀,..., s_n} of V, φ: X --→ P(V) ≅ Pⁿ is given by p ↦ [s₀(p) : · · · : s_n(p)].)

- A linear series (linear system) associated to L on X is a vector subspace V ⊆ H⁰(X, L). Ex: V = H⁰(X, L) is called the complete linear series.
- A (nonzero) linear series V ⊆ H⁰(X, L) defines a rational map φ: X --→ P(V). (In terms of a basis {s₀,..., s_n} of V, φ: X --→ P(V) ≅ Pⁿ is given by p ↦ [s₀(p) : · · · : s_n(p)].)

- A linear series (linear system) associated to L on X is a vector subspace V ⊆ H⁰(X, L). Ex: V = H⁰(X, L) is called the complete linear series.
- A (nonzero) linear series V ⊆ H⁰(X, L) defines a rational map φ: X --→ P(V). (In terms of a basis {s₀,..., s_n} of V, φ: X --→ P(V) ≅ Pⁿ is given by p ↦ [s₀(p) : · · · : s_n(p)].)

- A linear series (linear system) associated to L on X is a vector subspace V ⊆ H⁰(X, L). Ex: V = H⁰(X, L) is called the complete linear series.
- A (nonzero) linear series V ⊆ H⁰(X, L) defines a rational map φ: X --→ P(V). (In terms of a basis {s₀,..., s_n} of V, φ: X --→ P(V) ≃ Pⁿ is given by p ↦ [s₀(p) : ··· : s_n(p)].)

- A graded linear series associated to L on X is a collection
 V_• = {V_m}_{m∈ℕ} of vector subspaces V_m ⊆ H⁰(X, L^m) such that V₀ = K and V_k · V_ℓ ⊆ V_{k+ℓ} for all k, ℓ ∈ ℕ.
- The graded linear series {*H*⁰(*X*, *L^m*)}_{*m*∈ℕ} is called the complete graded linear series associated to *L*.

- A graded linear series associated to L on X is a collection
 V_• = {V_m}_{m∈ℕ} of vector subspaces V_m ⊆ H⁰(X, L^m) such that V₀ = K and V_k · V_ℓ ⊆ V_{k+ℓ} for all k, ℓ ∈ ℕ.
- The graded linear series {*H*⁰(*X*, *L^m*)}_{*m*∈ℕ} is called the complete graded linear series associated to *L*.

- Joint with Chih-Wei Chang, we generalized some fundamental results about asymptotic constructions for complete graded linear series to arbitrary ones.
- This is useful because incomplete graded linear series do naturally arise, most notably in connection with the restricted volume.

ヘロト 人間 ト ヘヨト ヘヨト

- Joint with Chih-Wei Chang, we generalized some fundamental results about asymptotic constructions for complete graded linear series to arbitrary ones.
- This is useful because incomplete graded linear series do naturally arise, most notably in connection with the restricted volume.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

Each nonzero V_m defines a rational map φ_m: X → Y_m ⊆ P(V_m), Y_m = φ_m(X).
N(V_•) = {m ∈ N | V_m ≠ 0}: semigroup, assume ≠ {0}.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbb{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map

 $\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$

• $N(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbb{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbb{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero *V_m* defines a rational map

 $\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbb{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbb{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbf{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Theorem

As $m \to \infty$, the maps ϕ_m stabilize birationally: There exist projective varieties X_{∞} , Y_{∞} , and for each $m \in \mathbf{N}(V_{\bullet})$ a commutative diagram

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subset \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Corollary

As $m \to \infty$:

• dim $\phi_m(X)$ = dim Y_m stabilize to $\kappa(V_{\bullet})$ = dim Y_{∞} , called the litaka dimension of V_{\bullet} .

If κ(V_•) = dim X, then deg(φ_m: X → Y_m) stabilize to δ(V_•) = deg(φ_∞: X_∞ → Y_∞), called the asymptotic degree of V_•.

ヘロン 人間 とくほ とくほ とう

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subset \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Corollary

As $m \to \infty$:

• dim $\phi_m(X)$ = dim Y_m stabilize to $\kappa(V_{\bullet})$ = dim Y_{∞} , called the litaka dimension of V_{\bullet} .

If κ(V_•) = dim X, then deg(φ_m: X → Y_m) stabilize to δ(V_•) = deg(φ_∞: X_∞ → Y_∞), called the asymptotic degree of V_•.

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subset \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Corollary

As $m \to \infty$:

• dim $\phi_m(X)$ = dim Y_m stabilize to $\kappa(V_{\bullet})$ = dim Y_{∞} , called the litaka dimension of V_{\bullet} .

If κ(V_•) = dim X, then deg(φ_m: X → Y_m) stabilize to δ(V_•) = deg(φ_∞: X_∞ → Y_∞), called the asymptotic degree of V_•.

 $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.

• Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subset \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$

• $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.

Corollary

As $m \to \infty$:

- dim $\phi_m(X)$ = dim Y_m stabilize to $\kappa(V_{\bullet})$ = dim Y_{∞} , called the litaka dimension of V_{\bullet} .
- If κ(V_•) = dim X, then deg(φ_m: X → Y_m) stabilize to δ(V_•) = deg(φ_∞: X_∞ → Y_∞), called the asymptotic degree of V_•.

- $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.
 - Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subset \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$
 - $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.
 - $\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$ for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

As $m \to \infty$, dim_K $V_m \approx m^{\kappa}$: The limit

$$\operatorname{vol}_{\kappa}(V_{\bullet}) = \lim_{m \in \mathbf{N}(V_{\bullet})} \frac{\dim_{\mathbf{K}} V_{m}}{m^{\kappa}/\kappa!}$$

exists, and $0 < vol_{\kappa}(V_{\bullet}) < \infty$. We call it the κ -volume of V_{\bullet} .

- $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.
 - Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$
 - $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.
 - $\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$ for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

As $m \to \infty$, dim_K $V_m \approx m^{\kappa}$: The limit

$$\operatorname{vol}_{\kappa}(V_{\bullet}) = \lim_{m \in \mathbf{N}(V_{\bullet})} \frac{\dim_{\mathbf{K}} V_{m}}{m^{\kappa}/\kappa!}$$

exists, and $0 < vol_{\kappa}(V_{\bullet}) < \infty$. We call it the κ -volume of V_{\bullet} .

- $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.
 - Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$
 - $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.
 - $\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$ for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

As $m o \infty$, dim_K $V_m \approx m^{\kappa}$: The limit

$$\operatorname{vol}_{\kappa}(V_{ullet}) = \lim_{m \in \mathbf{N}(V_{ullet})} rac{\dim_{\mathbf{K}} V_m}{m^{\kappa}/\kappa!}$$

exists, and $0 < \operatorname{vol}_{\kappa}(V_{\bullet}) < \infty$. We call it the κ -volume of V_{\bullet} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.
 - Each nonzero V_m defines a rational map $\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$
 - $\mathbf{N}(V_{\bullet}) = \{m \in \mathbb{N} \mid V_m \neq 0\}$: semigroup, assume $\neq \{0\}$.
 - $\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$ for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

As $m \to \infty$, dim_K $V_m \approx m^{\kappa}$: The limit

$$\operatorname{vol}_{\kappa}(V_{ullet}) = \lim_{m \in \mathbf{N}(V_{ullet})} rac{\dim_{\mathbf{K}} V_m}{m^{\kappa}/\kappa!}$$

exists, and $0 < vol_{\kappa}(V_{\bullet}) < \infty$. We call it the κ -volume of V_{\bullet} .

Moving intersection number

• $Z \subseteq X$ closed subvariety, dim Z = k.

- $V \subseteq H^0(X, L)$ nonzero subspace.
- Bs(V) = base locus of V.

The moving intersection number of *V* with *Z*, denoted by $(V^k \cdot Z)_{mov}$, is defined by choosing *k* general divisors $D_1, \ldots, D_k \in |V|$ and putting

$$(V^k \cdot Z)_{\text{mov}} = \# ((D_1 \cap \cdots \cap D_k \cap Z) \setminus Bs(V)).$$

ヘロト ヘアト ヘビト ヘビト

Moving intersection number

- $Z \subseteq X$ closed subvariety, dim Z = k.
- $V \subseteq H^0(X, L)$ nonzero subspace.
- Bs(V) = base locus of V.

The moving intersection number of *V* with *Z*, denoted by $(V^k \cdot Z)_{mov}$, is defined by choosing *k* general divisors $D_1, \ldots, D_k \in |V|$ and putting

$$(V^k \cdot Z)_{\text{mov}} = \# ((D_1 \cap \cdots \cap D_k \cap Z) \setminus Bs(V)).$$

ヘロン 人間 とくほ とくほ とう

Moving intersection number

- $Z \subseteq X$ closed subvariety, dim Z = k.
- $V \subseteq H^0(X, L)$ nonzero subspace.
- Bs(V) = base locus of V.

The moving intersection number of *V* with *Z*, denoted by $(V^k \cdot Z)_{mov}$, is defined by choosing *k* general divisors $D_1, \ldots, D_k \in |V|$ and putting

$$(V^k \cdot Z)_{\text{mov}} = \# ((D_1 \cap \cdots \cap D_k \cap Z) \setminus Bs(V)).$$

ヘロン 人間 とくほ とくほ とう

- $Z \subseteq X$ closed subvariety, dim Z = k.
- $V \subseteq H^0(X, L)$ nonzero subspace.
- Bs(V) = base locus of V.

The moving intersection number of *V* with *Z*, denoted by $(V^k \cdot Z)_{mov}$, is defined by choosing *k* general divisors $D_1, \ldots, D_k \in |V|$ and putting

$$(V^k \cdot Z)_{\text{mov}} = \# ((D_1 \cap \cdots \cap D_k \cap Z) \setminus Bs(V)).$$

イロト イポト イヨト イヨト 三日

- $Z \subseteq X$ closed subvariety, dim Z = k.
- $V \subseteq H^0(X, L)$ nonzero subspace.
- Bs(V) = base locus of V.

The moving intersection number of *V* with *Z*, denoted by $(V^k \cdot Z)_{mov}$, is defined by choosing *k* general divisors $D_1, \ldots, D_k \in |V|$ and putting

$$(V^k \cdot Z)_{\text{mov}} = \# ((D_1 \cap \cdots \cap D_k \cap Z) \setminus Bs(V)).$$

(本間) (本語) (本語) (二語)

- $V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$: graded linear series.
 - Each nonzero V_m defines a rational map

$$\phi_m\colon X\dashrightarrow Y_m\subseteq \mathbb{P}(V_m), \quad Y_m=\overline{\phi_m(X)}.$$

•
$$\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$$
 for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

Let $Z \subseteq X$ be a general κ -dim closed subvariety. Then the limit

$$(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \lim_{m \in \mathbb{N}(V_{\bullet})} \frac{(V_{m}^{\kappa} \cdot Z)_{\mathrm{mov}}}{m^{\kappa}}$$

exists, and $0 < (V_{\bullet}^{\kappa} \cdot Z)_{mov} < \infty$. Moreover,

 $(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \delta(V_{\bullet}|_{Z}) \operatorname{vol}_{\kappa}(V_{\bullet}) = \operatorname{deg}(\phi_{m}|_{Z} \colon Z \dashrightarrow \phi_{m}(Z)) \operatorname{vol}_{\kappa}(V_{\bullet})$

for large $m \in \mathbb{N}(V_{\bullet})$. In particular, if $\kappa = n = \dim X$, then

 $(V_{\bullet}^{n} \cdot X)_{\mathrm{mov}} = \delta(V_{\bullet}) \operatorname{vol}_{n}(V_{\bullet}) = \operatorname{deg}(\phi_{\infty} \colon X_{\infty} \longrightarrow Y_{\infty}) \operatorname{vol}_{n}(V_{\bullet}).$

$$V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$$
: graded linear series.

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

•
$$\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$$
 for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

Let $Z \subseteq X$ be a general κ -dim closed subvariety. Then the limit

$$(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \lim_{m \in \mathbb{N}(V_{\bullet})} \frac{(V_{m}^{\kappa} \cdot Z)_{\mathrm{mov}}}{m^{\kappa}}$$

exists, and $0 < (V^{\kappa}_{\bullet} \cdot Z)_{mov} < \infty$. Moreover,

 $(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \delta(V_{\bullet}|_{Z}) \operatorname{vol}_{\kappa}(V_{\bullet}) = \operatorname{deg}(\phi_{m}|_{Z} \colon Z \dashrightarrow \phi_{m}(Z)) \operatorname{vol}_{\kappa}(V_{\bullet})$

for large $m \in \mathbf{N}(V_{\bullet})$. In particular, if $\kappa = n = \dim X$, then

 $(V_{\bullet}^{n} \cdot X)_{\mathrm{mov}} = \delta(V_{\bullet}) \operatorname{vol}_{n}(V_{\bullet}) = \deg(\phi_{\infty} \colon X_{\infty} \longrightarrow Y_{\infty}) \operatorname{vol}_{n}(V_{\bullet}).$

$$V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$$
: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

•
$$\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$$
 for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

Let $Z \subseteq X$ be a general κ -dim closed subvariety. Then the limit

$$(V^{\kappa}_{\bullet} \cdot Z)_{\mathrm{mov}} = \lim_{m \in \mathbf{N}(V_{\bullet})} \frac{(V^{\kappa}_{m} \cdot Z)_{\mathrm{mov}}}{m^{\kappa}}$$

exists, and $0 < (V_{\bullet}^{\kappa} \cdot Z)_{mov} < \infty$. Moreover,

 $(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \delta(V_{\bullet}|_{Z}) \operatorname{vol}_{\kappa}(V_{\bullet}) = \operatorname{deg}(\phi_{m}|_{Z} \colon Z \dashrightarrow \phi_{m}(Z)) \operatorname{vol}_{\kappa}(V_{\bullet})$

for large $m \in \mathbb{N}(V_{\bullet})$. In particular, if $\kappa = n = \dim X$, then

 $(V_{\bullet}^{n} \cdot X)_{\mathrm{mov}} = \delta(V_{\bullet}) \operatorname{vol}_{n}(V_{\bullet}) = \deg(\phi_{\infty} \colon X_{\infty} \longrightarrow Y_{\infty}) \operatorname{vol}_{n}(V_{\bullet}).$

$$V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$$
: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

•
$$\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$$
 for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

Let $Z \subseteq X$ be a general κ -dim closed subvariety. Then the limit

$$(V^{\kappa}_{\bullet} \cdot Z)_{\mathrm{mov}} = \lim_{m \in \mathbf{N}(V_{\bullet})} \frac{(V^{\kappa}_{m} \cdot Z)_{\mathrm{mov}}}{m^{\kappa}}$$

exists, and $0 < (V_{\bullet}^{\kappa} \cdot Z)_{mov} < \infty$. Moreover,

 $(V^{\kappa}_{\bullet} \cdot Z)_{\mathrm{mov}} = \delta(V_{\bullet}|_{Z}) \operatorname{vol}_{\kappa}(V_{\bullet}) = \operatorname{deg}(\phi_{m}|_{Z} \colon Z \dashrightarrow \phi_{m}(Z)) \operatorname{vol}_{\kappa}(V_{\bullet})$

for large $m \in \mathbf{N}(V_{\bullet})$. In particular, if $\kappa = n = \dim X$, then

 $(V_{\bullet}^{n} \cdot X)_{\mathrm{mov}} = \delta(V_{\bullet}) \operatorname{vol}_{n}(V_{\bullet}) = \deg(\phi_{\infty} \colon X_{\infty} \longrightarrow Y_{\infty}) \operatorname{vol}_{n}(V_{\bullet}).$

$$V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$$
: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

•
$$\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$$
 for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

Let $Z \subseteq X$ be a general κ -dim closed subvariety. Then the limit

$$(V^{\kappa}_{\bullet} \cdot Z)_{\mathrm{mov}} = \lim_{m \in \mathbf{N}(V_{\bullet})} \frac{(V^{\kappa}_{m} \cdot Z)_{\mathrm{mov}}}{m^{\kappa}}$$

exists, and $0 < (V_{\bullet}^{\kappa} \cdot Z)_{mov} < \infty$. Moreover,

 $(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \delta(V_{\bullet}|_{Z}) \operatorname{vol}_{\kappa}(V_{\bullet}) = \operatorname{deg}(\phi_{m}|_{Z} \colon Z \dashrightarrow \phi_{m}(Z)) \operatorname{vol}_{\kappa}(V_{\bullet})$

for large $m \in \mathbf{N}(V_{\bullet})$. In particular, if $\kappa = n = \dim X$, then

 $(V_{\bullet}^{n} \cdot X)_{\text{mov}} = \delta(V_{\bullet}) \operatorname{vol}_{n}(V_{\bullet}) = \deg(\phi_{\infty} \colon X_{\infty} \longrightarrow Y_{\infty}) \operatorname{vol}_{n}(V_{\bullet}).$

$$V_{\bullet} = \{V_m\}_{m \in \mathbb{N}}, V_m \subseteq H^0(X, L^m)$$
: graded linear series.

• Each nonzero V_m defines a rational map

$$\phi_m \colon X \dashrightarrow Y_m \subseteq \mathbb{P}(V_m), \quad Y_m = \overline{\phi_m(X)}.$$

•
$$\kappa = \kappa(V_{\bullet}) = \dim \phi_m(X)$$
 for large $m \in \mathbf{N}(V_{\bullet})$.

Theorem

Let $Z \subseteq X$ be a general κ -dim closed subvariety. Then the limit

$$(V^{\kappa}_{\bullet} \cdot Z)_{\mathrm{mov}} = \lim_{m \in \mathbf{N}(V_{\bullet})} \frac{(V^{\kappa}_{m} \cdot Z)_{\mathrm{mov}}}{m^{\kappa}}$$

exists, and $0 < (V_{\bullet}^{\kappa} \cdot Z)_{mov} < \infty$. Moreover,

 $(V_{\bullet}^{\kappa} \cdot Z)_{\mathrm{mov}} = \delta(V_{\bullet}|_{Z}) \operatorname{vol}_{\kappa}(V_{\bullet}) = \operatorname{deg}(\phi_{m}|_{Z} \colon Z \dashrightarrow \phi_{m}(Z)) \operatorname{vol}_{\kappa}(V_{\bullet})$

for large $m \in \mathbf{N}(V_{\bullet})$. In particular, if $\kappa = n = \dim X$, then

$$(V_{\bullet}^{n} \cdot X)_{\text{mov}} = \delta(V_{\bullet}) \operatorname{vol}_{n}(V_{\bullet}) = \deg(\phi_{\infty} \colon X_{\infty} \longrightarrow Y_{\infty}) \operatorname{vol}_{n}(V_{\bullet}).$$